RSE-M

IN-SERVICE INSPECTION RULES FOR MECHANICAL COMPONENTS OF PWR NUCLEAR ISLANDS.

2016 EDITION

1st Erratum – October 2020

Afcen

French Association for Design, Construction and In-Service Inspection Rules for Nuclear Island Components

AFCEN - Association governed by the French Law of 1st July, 1901

Administrative Offices: AFCEN, Tour AREVA - 92084 Paris la Défense Cedex

Legal registration No. 2016-176

ISBN No. 2-913638-86-4

NOTE TO THE USERS

This document proposes modification which correspond to a translation error in the RSE-M 2016 English edition. The following page is to be replaced:

- Volume II – Appendix 5.4 – Page 31

RSE-M – 2016 Edition Appendix 5.4

If $L_{r}^{^{\star}} < L_{r} \leq 1,$ a new value for K_{r} is determined by a linear interpolation between $K_r(L_r^*)$ and $K_r(L_r=1)$:

$$K_r = K_r(L_r^*) + \frac{K_r(L_r = 1) - K_r(L_r^*)}{1 - L_r^*}(L_r - L_r^*)$$

 $K_{r}\left(L_{r}^{*}\right) = \left\{\frac{\mathsf{E}\varepsilon_{\mathsf{ref}}\left(L_{r}^{*}\mathsf{S}_{\mathsf{y}}\right)}{L_{r}^{*}\mathsf{S}_{\mathsf{y}}} + 0.5\frac{\left(L_{r}^{*}\right)^{2}}{\left(L_{r}^{*}\right)^{2} + 1}\right\}^{-\frac{1}{2}}$ where

 $K_r(L_r = 1) = \left\{ \frac{E\epsilon_{ref}(S_y)}{S} + 0.25 \right\}^{-\frac{1}{2}}$ and

d) J is calculated by the formula:
$$\frac{K_J - \left[\frac{\sigma_{nor}}{\sigma_{no}}\right]^2 \left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]}{1}$$

$J_s = J_{el.} \frac{1}{K^2}.$

IV.4.1.1.2 J_S CLC OPTION – STRAIGHT PIPE - LONGITUDINAL SURFACE **BREAKING DEFECT**

a) L_r is calculated using the following expression:

$$L_r = \sqrt{\left[\frac{p}{q_p \mu_{ep}}\right]^2 + \left[\frac{m_1}{q_p \mu_{em1}}\right]^2 + \left[\frac{m_2}{q_m}\right]^2}$$

where p, n_1 , m_1 and m_2 are normalized loads:

$$p = \frac{\sqrt{3}}{2} \frac{Pr_m}{tS_v} \qquad \qquad m_1 = \frac{\sqrt{3}}{2} \frac{M_1}{\pi r_m^2 tS_v} \qquad \qquad m_2 = \frac{M_2}{4 r_m^2 tS_v}$$

P: internal pressure

M₁: torsional moment M₂: bending moment

- if $m_2 \neq 0$ and $p \leq 0.5$, this expression is valid for $L_r \leq 1.4$;
- if $m_2 \neq 0$ and p > 0.5, this expression is valid for $L_r \leq 1.2$.

If only the applied moment modulus |M| is known, it is assumed that: $M_1 = |M| \text{ and } M_2 = 0.$

The significance and value of coefficients q_m , q_p , μ_{em1} and μ_{ep} are given in compendium (VII).

© AFCEN 2016-176 31

RSE-M

IN-SERVICE INSPECTION RULES FOR MECHANICAL COMPONENTS OF PWR NUCLEAR ISLANDS.

2017 EDITION

1st Erratum – October 2020

Afcen

French Association for Design, Construction and In-Service Inspection Rules for Nuclear Island Components

AFCEN - Association governed by the French Law of 1st July, 1901

Administrative Offices: AFCEN, Tour AREVA - 92084 Paris la Défense Cedex

Legal registration No. 2017-206

ISBN No. 979-10-95971-20-7

NOTE TO THE USERS

This document proposes modification which correspond to a translation error in the RSE-M 2017 English edition.

The following page is to be replaced:

- Volume II – Appendix 5.4 – Page 31

RSE-M

IN-SERVICE INSPECTION, INSTALLATION AND MAINTENANCE RULES FOR MECHANICAL COMPONENTS OF PWR

2018 EDITION

1st Erratum – October 2020

Afcen

French Association for Design, Construction and In-Service Inspection Rules for Nuclear Island Components

AFCEN - Association governed by the French Law of 1st July, 1901 Administrative Offices: AFCEN, Tour AREVA - 92084 Paris la Défense Cedex ISBN No. 979-10-95971-25-2

NOTE TO THE USERS

This document proposes modification which correspond to a translation error in the RSE-M 2018 English edition.

The following page is to be replaced:

- Volume II – Appendix 5.4 – Page 31

RSE-M – 2018 Edition Appendix 5.4

If $L_r^* < L_r \le 1$, a new value for K_r is determined by a linear interpolation between $K_r(L_r^*)$ and $K_r(L_r=1)$:

$$K_r = K_r(L_r^*) + \frac{K_r(L_r = 1) - K_r(L_r^*)}{1 - L_r^*}(L_r - L_r^*)$$

 $K_{r}\left(L_{r}^{\star}\right) = \left\{\frac{\mathsf{E}\varepsilon_{\mathsf{ref}}\left(L_{r}^{\star}\mathsf{S}_{\mathsf{y}}\right)}{L_{r}^{\star}\mathsf{S}_{\mathsf{y}}} + 0.5\frac{\left(L_{r}^{\star}\right)^{2}}{\left(L_{r}^{\star}\right)^{2} + 1}\right\}^{-\frac{1}{2}}$ where

 $K_r(L_r = 1) = \left\{ \frac{E\epsilon_{ref}(S_y)}{S} + 0.25 \right\}^{-\frac{1}{2}}$ and

$$\underline{K_{J}} = \left[\frac{\sigma_{nor}}{\sigma_{no}}\right]^{2} \left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]$$

d) J is calculated by the formula: $\frac{K_J - \left[\frac{\sigma_{nor}}{\sigma_{no}}\right]^2 \left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]}{\left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]}$ $J_s = J_{el.} \frac{1}{K^2} \, .$

IV.4.1.1.2 J_S CLC OPTION – STRAIGHT PIPE - LONGITUDINAL SURFACE **BREAKING DEFECT**

a) L_r is calculated using the following expression:

$$L_r = \sqrt{\left[\frac{p}{q_p \mu_{ep}}\right]^2 + \left[\frac{m_1}{q_p \mu_{em1}}\right]^2 + \left[\frac{m_2}{q_m}\right]^2}$$

where p, n_1 , m_1 and m_2 are normalized loads:

$$p = \frac{\sqrt{3}}{2} \frac{Pr_m}{tS_y} \qquad \qquad m_1 = \frac{\sqrt{3}}{2} \frac{M_1}{\pi r_m^2 tS_y} \qquad \qquad m_2 = \frac{M_2}{4 r_m^2 tS_y}$$

P: internal pressure

M₁: torsional moment M₂: bending moment

- if $m_2 \neq 0$ and $p \leq 0.5$, this expression is valid for $L_r \leq 1.4$;
- if $m_2 \neq 0$ and p > 0.5, this expression is valid for $L_r \leq 1.2$.

If only the applied moment modulus |M| is known, it is assumed that: $M_1 = |M| \text{ and } M_2 = 0.$

The significance and value of coefficients q_m , q_p , μ_{em1} and μ_{ep} are given in compendium (VII).

RSE-M – 2017 Edition Appendix 5.4

If $L_r^* < L_r \le 1$, a new value for K_r is determined by a linear interpolation between $K_r(L_r^*)$ and $K_r(L_r=1)$:

$$K_r = K_r(L_r^*) + \frac{K_r(L_r = 1) - K_r(L_r^*)}{1 - L_r^*}(L_r - L_r^*)$$

 $K_{r}\left(L_{r}^{\star}\right) = \left\{\frac{\mathsf{E}\varepsilon_{\mathsf{ref}}\left(L_{r}^{\star}\mathsf{S}_{\mathsf{y}}\right)}{L_{r}^{\star}\mathsf{S}_{\mathsf{y}}} + 0.5\frac{\left(L_{r}^{\star}\right)^{2}}{\left(L_{r}^{\star}\right)^{2} + 1}\right\}^{-\frac{1}{2}}$ where

 $K_r(L_r = 1) = \left\{ \frac{E\epsilon_{ref}(S_y)}{S} + 0.25 \right\}^{-\frac{1}{2}}$ and

$$\underline{K_J} = \left[\frac{\sigma_{nor}}{\sigma_{no}}\right]^2 \cdot \left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]$$

d) J is calculated by the formula: $\frac{K_J - \left[\frac{\sigma_{nor}}{\sigma_{no}}\right]^2 \left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]}{\left[\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}\right]}$ $J_s = J_{el.} \frac{1}{K^2} \, .$

IV.4.1.1.2 J_S CLC OPTION – STRAIGHT PIPE - LONGITUDINAL SURFACE **BREAKING DEFECT**

a) L_r is calculated using the following expression:

$$L_r = \sqrt{\left[\frac{p}{q_p \mu_{ep}}\right]^2 + \left[\frac{m_1}{q_p \mu_{em1}}\right]^2 + \left[\frac{m_2}{q_m}\right]^2}$$

where p, n_1 , m_1 and m_2 are normalized loads:

$$p = \frac{\sqrt{3}}{2} \frac{Pr_m}{tS_y} \qquad \qquad m_1 = \frac{\sqrt{3}}{2} \frac{M_1}{\pi r_m^2 tS_y} \qquad \qquad m_2 = \frac{M_2}{4 r_m^2 tS_y}$$

P: internal pressure

M₁: torsional moment M₂: bending moment

- if $m_2 \neq 0$ and $p \leq 0.5$, this expression is valid for $L_r \leq 1.4$;
- if $m_2 \neq 0$ and p > 0.5, this expression is valid for $L_r \leq 1.2$.

If only the applied moment modulus |M| is known, it is assumed that: $M_1 = |M| \text{ and } M_2 = 0.$

The significance and value of coefficients q_m , q_p , μ_{em1} and μ_{ep} are given in compendium (VII).

© AFCEN 2017-206 31