RSE-M

IN-SERVICE INSPECTION RULES FOR MECHANICAL COMPONENTS OF PWR NUCLEAR ISLANDS.

2016 EDITION

1st Erratum – October 2020

Afcen

French Association for Design, Construction and In-Service Inspection Rules for Nuclear Island Components

AFCEN - Association governed by the French Law of 1st July, 1901 Administrative Offices: AFCEN, Tour AREVA - 92084 Paris la Défense Cedex Legal registration No. 2016-176 ISBN No. 2-913638-86-4

NOTE TO THE USERS

This document proposes modification which correspond to a translation error in the RSE-M 2016 English edition.

The following page is to be replaced:

- Volume II – Appendix 5.4 – Page 31

If $L_{r}^{^{\star}} < L_{r} \leq 1,$ a new value for K_{f} is determined by a linear interpolation between $K_r(L_r^*)$ and $K_r(L_r=1)$:

$$K_{r} = K_{r}(L_{r}^{*}) + \frac{K_{r}(L_{r} = 1) - K_{r}(L_{r}^{*})}{1 - L_{r}^{*}}(L_{r} - L_{r}^{*})$$

where
$$K_{r}\left(L_{r}^{*}\right) = \left\{\frac{E\varepsilon_{ref}\left(L_{r}^{*}S_{y}\right)}{L_{r}^{*}S_{y}} + 0.5\frac{\left(L_{r}^{*}\right)^{2}}{\left(L_{r}^{*}\right)^{2} + 1}\right\}^{-\frac{1}{2}}$$

$$K_{r}(L_{r} = 1) = \left\{ \frac{E\epsilon_{ref}(S_{y})}{S_{y}} + 0.25 \right\}^{-\frac{1}{2}}$$

and

 $\frac{\sigma_{nor}}{\sigma_{no}}^{2} \frac{\psi + \frac{\varepsilon_{ref}}{\sigma_{ref}/E}}$ J is calculated by the formula: d) $J_s = J_{el.} \frac{1}{K^2}.$

IV.4.1.1.2 J_s CLC OPTION – STRAIGHT PIPE - LONGITUDINAL SURFACE **BREAKING DEFECT**

a) L_r is calculated using the following expression:

$$L_r = \sqrt{\left[\frac{p}{q_p \mu_{ep}}\right]^2 + \left[\frac{m_1}{q_p \mu_{em1}}\right]^2 + \left[\frac{m_2}{q_m}\right]^2}$$

where p, n_1, m_1 and m_2 are normalized loads:

$$p = \frac{\sqrt{3}}{2} \frac{Pr_m}{tS_y} \qquad \qquad m_1 = \frac{\sqrt{3}}{2} \frac{M_1}{\pi r_m^2 tS_y} \qquad \qquad m_2 = \frac{M_2}{4r_m^2 tS_y}$$

P: internal pressure

 M_1 : torsional moment M_2 : bending moment

if $m^{}_2 \neq 0$ and $p \, \le \, 0.5,$ this expression is valid for $\, L^{}_r \, \le \, 1.4$; -

if $m^{}_2 \neq 0$ and p > 0.5, this expression is valid for $L^{}_r \leq$ 1.2 . -

If only the applied moment modulus |M| is known, it is assumed that: $M_1 = |M|$ and $M_2 = 0$.

The significance and value of coefficients q_m , q_p , μ_{em1} and μ_{ep} are given in compendium (VII).